蓝色流体|流体专业论坛 专注流体

 找回密码
 快速注册

QQ登录

只需一步,快速开始

查看: 6202|回复: 8

[转帖] 用混沌理论解释湍流现象

[复制链接]
发表于 2009-5-1 12:49 | 显示全部楼层 |阅读模式
用混沌理论解释湍流现象

一、历史的简短回顾
  湍流问题曾被称为“经典物理学最后的疑团”。因为它涉及到从微观到宏观许多时空尺度上的运动,它不仅和周围进行着能量交换,其内部也存在着各式各样的能量交换。有人估计:在一个线度为ι的湍流中,信息产生率为
 

其中v为运动学粘滞系数,u为湍流中最大漩涡的速度。据此,即使是一杯咖啡被搅拌时也会产生1012比特/秒的信息。难怪对湍流的研究进展甚缓,至今还停留在半经验理论的水平上。
早在阿基米德时代,人们就注意到了湍流现象。1883年雷诺(Reynolds)指出:当流体的雷诺数R大于某个临界值Rc时,它就从层流向湍流转化。尔后,他又提出了著名的雷诺方程,试图用确定论的方法来解决这个问题,然而始终没有得到明确的结果。
从本世纪30年代开始,泰勒(Taylor)、卡曼(Karman)、哥尔莫柯洛夫(Kolmogorov)、周培源等人创立了湍流的统计理论,把概率论的方法引进了这个领域。这不能不说是一个重大的进展,湍流中大漩涡套着中漩涡,中漩涡套着小漩涡,互相交叉互相混杂,这些运动着的漩涡数量之巨、种类之多、相互作用之繁决不是用几个甚至几十个确定论的方程可以描述的。这几十年来,湍流的统计理论有了很大的发展,但是对这个复杂的问题几乎没有引出什么定量的预测。
   随着科学的发展,电子计算机的诞生,在最近的实验和理论研究中都出现了有希望的新方向,研究的重点是一些能为理论研究所接受的比较简单的湍流发生机制,研究的对象也从流体力学扩充到物理、生物、化学、天文、地学等领域。有人认为,对这个问题的研究很可能导致物理学的又一次革命——开辟对“复杂”系统研究的新途径。
二、新的方向
        我们知道:从理论上解决湍流问题的重大障碍是流体力学基本方程——纳维尔—斯托克斯(Navier-Stockes)公式的非线性。以前只知道这类方程的定常解不稳定,会出现分岔,至于这以后会发生什么就不清楚了。1963年,洛伦兹(Lorentz)在电子计算机上进行大气对流的数值实验时,发现一个完全确定的三阶常微分方程组,在一定的参数范围内给出了非周期的、看起来很混乱的输出。传统的观念根本无法解释洛伦兹的发现。起先他以为随机性来自计算机的误差,在排除了种种随机因素后还是出现了上述现象。面对事实,他冲破了旧的观念,提出了一种新的湍流发生机制。由于受到当时科学水平的限制,人们没有也不可能意识到这项工作的划时代意义,加之论文登在一本不太出名的杂志上,所以一直过了将近十年,这项工作才被重视起来。人们开始认识到确定论系统的内在随机性——混沌(chaos)是客观事物固有的特性,对它的研究很可能导致湍流问题的突破性进展。
  确实,混沌现象的发现是人类认识自然的又一次飞跃。以前,我们把对自然界的描述分为确定论和概率论这二套看起来完全对立的方法,取得了很大的成功。但是对造成它们之间差别的原因,以及它们之间的联系等一系列根本问题,却始终没有得到满意的答复。以致统计物理的奠基人玻尔兹曼(Boltzmann)也为此而苦恼万分,人们对随机性的出现存在两种观点。有文献认为,统计方法只是处理大量粒子体系的一种权宜之计,有朝一日它将要被精确的确定论计算淘汰掉。但是,比较多的人认为:对于大量粒子所组成的复杂系统而言,统计规律是它们本身所特有的,决不能把它还原为力学规律。从确定论到概率论的发展在哲学上常常用来说明量的增加必定导致质的改变。但是对于中间的转化过程,由于缺乏必要的手段,所以一直没有搞清楚。电子计算机的应用使我们找到了这个问题的答案:只要确定论的系统稍微复杂一点,它就会出现随机行为,被人奉为确定论的典型——牛顿力学——具有内在的随机性。在确定论和概率论的描述之间存在着由此及彼的桥梁。
  混沌理论刚出现就解决了这个百年悬案,所以有人把混沌理论和确定论、概率论并列起来,作为人类认识客观世界的又一套方法论,称为混沌论。在近阶段,混沌理论在哲学上的意义远大于它在一些具体问题上的意义,它标志了人类对客观世界的认识已进入了一个新阶段——不仅对“非此即彼”的明晰形态,而且对“亦此亦彼”的过渡性形态都能进行比较详细的研究。与随机性相关的混沌理论以及与可能性相关的模糊数学都在迅速地发展着,虽然它们研究的对象不尽相同,但是它们所描述的都是客观事物的不确定性。
  为了说明什么是混沌现象,我们考察如下的迭代过程:
  

  如果把参数a限制在[0,2]区间内,上式便是从线段I=[-1,1]到它自身的一个非线性映象。这种映象可以记为f(xn),它表示经过n次迭代所得到的结果。f(x1),f(x2),…是对离散时间(n相当于tn,△t=1)的不可逆演化序列。它所描写的是一个最简单的耗散系统。在参数a的增加过程中,迭代将出现多次突变。
  当0<a<0.75时,在x∈[-1,1]内任选一个初值x0,迭代过程
故谓之不稳定不动点或排斥子。当a变化时,原来的稳定不动点可能失稳,但同时又会产生新的不动点。
  当0.75<a<1.25时,迭代结果将趋于两个数值交替出现的状态,我们称它为2点周期。a>1.25后又会出现22点周期,尔后相继出现稳定的2n点周期(n=3,4,5,…)。当a=a∞=1.40115…时迅速达到无穷长周期:n→∞。我们称区间[0,a∞]为倍周期区,随着a从小到大它可分为一周期区、二周期区、……2n周期区。在上述过程中,每一个稳定的周期在分岔点上都分为二个稳定的周期,通常称之为倍周期分岔。
  当a>a∞后,多数迭代结果看起来象是分布在一定区间内的随机数,这就是混沌现象,区间[a∞,2]叫做混沌区。在混沌区内,根据随机数在x∈[-1,1]区间内分布区域的多少我们就说有几个混沌带。随着a从小到大,混沌区可分为一带区、二带区、……2n带区,当a趋向a∞时n→∞。此外,在混沌区中还嵌套着许许多多周期窗口。关于这个迭代更细致的结构,无论从计算机实验还是从严格的解析理论中都发现了下面几个重要的性质。
  (1)M.S.S.规则:上述映射的周期结构(包括周期数、循环方式)在参数轴上的排列具有相同的顺序,对任意周期P,在参数增大的方向上,按顺序有2p,4p,8p,…,2np,…的倍周期序列。周期区和混沌区内均存在倍周期序列。
  (2)萨可夫斯基(Sarkovskii)定理:混沌区内一带区中主要周期窗口随着参数的减小依次(不相连接)为3,5,7,…,类似地2n带区中主要周期窗口为2n×3,2n×5,2n×7,…,混沌区内主要周期窗口的排列也是有章可循的。
  (3)D.G.P.内部相似定律:对任一周期p,在它的右边必定存在一个区间,这个区间内的结构与整个参数区间内的结构相似,但是它的周期为后者的p倍。
  定律显示了混沌区内存在着无穷嵌套的自相似几何结构,同一种行为在越来越小的尺度上重复出现。这样的图象颇具我国古代所刻划的混沌——“气似质具而未相离”的风格。
  1977年菲金堡姆(Feigenbaum)用一个可编程序的计算器配合几何作图的方法证明了:单峰映射相邻的倍周期分岔点之间的距离当n→∞时,存在着一个普适常数
  
  =4.6692016091029……。
 
  在无穷嵌套的自相似几何结构中,相邻二个结构之间的标度变换因子,当n→∞时也将趋向一个常数
  a=2.5029078750957…。
 郝柏林在1981年发现,参数从小到大靠近分岔点时,迭代将发生临界慢化现象——达到定态的时间τ趋向无穷大
  
(4) 其中慢化指数△=1,恰好与相变现象的平均场理论一致。所不同的是这里呈现为“单边”慢化,它发生在从低阶分岔状态往高阶分岔状态接近的过程中。
  上述各种普适性和标度律,对于相当多的一维映射都成立。由微分方程所描述的复杂的实际过程往往可以化为高维映射。实践表明高维映射也具有这样的性质。法兰斯西尼(V.Frances-chini)等人报导过纳维尔—斯托克斯方程的演化过程中所看到的倍周期分岔序列和混沌区域,以及它们的普适常数和标度变换因子。虽然这些讨论仅限于少自由度系统的时间演化过程,尚未同时涉及到空间分布,但是它至少显示了流体力学的基本方程中也有内在的随机性。人们越来越有信心在这个方程的框架内,用混沌的观点来说明流体从层流到湍流的演化过程。
  定量关系的发现使人们自然地把包括了分岔和混沌的“突变”现象和物理中已经研究得很透彻的“相变”现象进行更深刻的类比。这方面工作的蓬勃开展有三个背景。首先,体系远离平衡态的失稳(突变)和体系从一种热力学的平衡态转变到另一种平衡态(相变)有许多类似的地方。在定量规律发现以前已经有不少人从事这一方面的工作。其次,数学家托姆(Thom)在70年代初创立了“突变论”(catastrophetheory),使得“突变”和“相变”处于同一个数学理论的框架之下,从数学上提供了开展这项工作的保障。第三,恰逢威尔逊(Wilson)用重整化群方法处理了相变(这是个牵涉到无穷维自由度的难题),并取得了很大成功,再者,菲金堡姆用简单的设备所发现的如此重要的规律性,也颇具传奇色彩,它给人以科学的源泉永远不会枯竭,人类的认识永远不会穷尽的启迪。广大科学工作者看到了解决湍流问题的新方向。 
三、奇怪吸引子
  在研究实际情况的高维映射中,除了具有与一维映射类似的性质外,还存在着相空间的相似性。这种相似性是由奇怪吸引子的分数维数所描述的。和通常的高维吸引子不同,奇怪吸引子的形状,既非曲线也非曲面,而是由离散点集组成的,点集中任何二个相邻的点之间必定存在不属于这个点集的点。为了具体说明这个问题让我们考察埃农(Henon)映射
  xn+1=1-ax2n+yn
  yn=bxn (5)
  这是一个二维映象,b=0.3,a=0.4时它是一个耗散系统,经过10000次迭代后,人们可以绘制出点集(x,y)的图A来。如果把迭代次数增加到10万次取出A图中的一小块放大绘成B图,可以看出它仍有内部结构。迭代100万次,再取出B图中的一小块放大,人们会得到与B相似的C图……藉此不难想像出高维映象中奇怪吸引子的性态。
  奇怪吸引子的出现是由于高维相空间中的耗散系统,在演化过程中要耗损掉快弛豫参量,剩下决定系统长时间行为的慢弛豫参量。在这过程中,系统的相体积要不断地收缩,并趋向一个维数比原来相空间维数低的有限区域——吸引子上;方程的非线性,使得某些方向上的运动是不稳定的,局部看来呈指数分离。为了在有限的区域里进行指数分离,空间运动轨道只能采取无穷次折迭起来的办法。奇怪吸引子吸引一切在它外面的运动,而它内部的运动轨道又是互相排斥的,它是吸引与排斥二种趋势相斗争、妥协的结果。它所描述的相空间中无穷嵌套的自相似结构和湍流中大漩涡套小漩涡的情景有异曲同工之妙。所以罗埃尔在1971年就提出了湍流就是奇怪吸引子的观点。瞬息万变的湍流现象内部有无限多的层次,但是我们一旦抓住了各个层次上的共同特征及其本质的规律后就可以化繁为简,构造出奇怪吸引子这个处处稀疏、处处不连续的几何对象来刻划它。
  由于奇怪吸引子的行为特异,所以至今还没有为人们普遍接受的定义,但是下面的性质是公认的。
  奇怪吸引子上的运动对于初始条件十分敏感,因而不存在周期性。其结果使体系遍历各种可能的状态。这种谓之遍历性的性质将初始条件的影响彼此抵消、互相调匀了,为我们用统计方法描述体系的性质提供了依据。
 奇怪吸引子的另一个特征便是作为相空间中的子集合,往往具有非整数维数。这是豪斯道夫(Hausdorff)1919年引入的维数概念:
  
  它表明对于p维空间中的子集合,需要用N块边长为ε(任意值)的d维方块去覆盖。为了使覆盖越来越精确,必须使ε趋向零,也即用无限多个小方块来覆盖无限多个点,通过求它们的比值把无限维的问题转化为有限的情况来处理,所以往往呈分数的形式。非整维数的引进把牛顿、爱因斯坦以来的时空观又向前推进了一大步。作为非整维数的实例,我们介绍一下康托尔(Cantor)集合,它是由线段[0,1]三等分后舍去中段,对剩下二个闭区间再作同样的处理,如此无穷继续下去,最后剩下的点的全体所组成的。这是一种处处稀疏、处处不连续的几何对象。显然,康托尔集合的维数d=ln2/ln3=0.630。
  康托尔集合是一种很基本的对象,它出现在许多更复杂,具有无穷自相似层次的几何结构的某些截面中。前述埃农吸引子在某一方向上基本是连续的一维结构,而在与之相垂直的方向上,虽然有一定宽度但又处处稀疏达不到一维连续统。计算表明,埃农吸引子的豪斯道夫维数d=1.26。需要指出的是,由于豪斯道夫维数是一种测度性质,它可能随参数或空间位置不同而异。
  在科学史上往往有这样的情况:从某一个方向考虑一个难题许久未有结果,但如果从另一个角度去考虑,有时甚至只是改变了一下问题的提法就看到了希望所在。湍流的研究也许就是这样。1976年曼德勃罗特(Mandalbrot)提出必须从几何形态的考虑着手解决湍流问题。根本改变了传统的做法。他根据大尺度间歇现象的发现,认为大气湍流不是像传统的连续介质那样处处都存在,而是有些地方有,有些地方又没有;有时有,有时又没有。因此,湍流运动只是一种局部的、间断的现象,应该把湍流区看作是介于二维和三维之间的一种分数维数的情况来处理。湍流的运动区域与肥皂泡的形状很像,与“奇怪吸引子”有类似的结构。他也提出要用分形(fractal)研究湍流。
  “他山之石可以攻玉”,这里一方面指的是不同领域、不同学科之间的交叉、渗透,同时也包括了积极吸收前人的成果,吸取他人的先进思想,把它应用到有待解决的问题中去。通过奇怪吸引子把古老的湍流问题和现代相变理论挂上了钩,许多人借用了相变理论中的临界指数、标度律和普适性等概念,藉助重整化群的方法来处理湍流问题,并且得到了满意的结果。
四、条条道路通湍流
  目前,对混沌现象的研究离开发达的湍流相去甚远。但是,大家都希望能用少自由度的低维吸引子来刻划湍流。这个观点在弱湍流阶段已得到了实现。在下面的行文中,我们将不加区别地运用混沌和湍流这两个词。
  从数学上来讲,通向湍流的道路和非线性方程解的分岔性质有着密切的关系。我们已经比较详细地讨论了倍周期分岔的道路,下面将简单地介绍其它几种情况。 
1.切分岔——阵发混沌的道路
  它发生在混沌区内周期窗口附近。现以a=1.75为起始点的三周期f(3)(x)为例说明之,在f(3)(x)~x图中,f(3)(x)与对角线f(3)(x)=x在三点同时相切,这三个切点就是不动点。当a>1.75时,三个切点变为三对交点。根据稳定性判据,在每一对交点上有一个是稳定的,另一个是不稳定的,因此同时出现了一对稳定和不稳定周期。最后在这里形成了稳定的三周期轨道。而在a<1.75时,f(3)(x)与对角线没有交点,因而也不存在稳定的或者不稳定的周期,这个由切点而导致的分岔称为切分岔。阵发混沌发生于切分岔起点之前,它随时间变化的基本特征是:在基本上属于周期振荡的序列中,有时会突然出现一阵混沌运动,尔后又出现周期运动……。随着a的减小混沌运动所占的时间比例越来越大,最后完全变为混沌。研究表明,凡是观察到倍周期分岔的系统都可以看到阵发混沌。
2.霍甫(Hopf)分岔——准周期的道路
  由于分岔次数的差别它又分为二种情况:
  (1)朗道(Landau)—霍甫道路
  霍甫分岔描述的是在二维以上的相空间中,当某个不动点在参数变化的过程中由稳定而失稳时,新的稳定状态往往是围绕着原有不动点的周期运动,并产生频率为f1的振荡。控制参数继续增大,极限环又失稳出现了另一个新频率f2,运动扩充以到二维环面。只要f1、f2之比为无理数时,运动就有准周期的性质:在充分长的时间内,系统所经历的状态可以与事先给定的一种状态任意地接近。随着参数的增大,新产生的频率越来越多,当频率数变得充分大时,导致了发达的湍流。
  但是,在其后的几十年中,无论是理论研究还是实验观察都否定了上述机制。然而,他们对这个问题考虑的精华部分却被后人所接受。
  (2)罗埃尔—泰肯斯(Tankens)道路
  1971年他们提出,不动点经过三次霍甫分岔后,只要所产生的三个频率是不可约的就可能失稳而进入湍流状态。1978年他们认为只需要经过二次分岔,即二维环面上的准周期运动就可能失稳而导致湍流。但是,在实验室中和计算机上都发现了具有三个不可约频率的准周期运动的系统仍未进入混沌的情况。看来准周期道路应理解为不动点经过有限次分岔后就会失稳而进入混沌状态,具体情况须视系统的本身、参数的选择以及环境的影响而决定。
  郝柏林等人在微分方程所描述的强迫布鲁塞尔振子参数空间的不同截面方向上已经观察到了上面所介绍的各种通向湍流的道路。看来湍流的发生机制可能是多方面的,一条道路只反映了一个侧面。“条条道路通湍流”并非说说而已。
  实践是检验真理的唯一标准。我们采用了分频采样、功率谱、彭加勒(Poincare)截面和直接观察的方法,引进了吸引子的维数、李亚普诺夫(Lyapunov)指数以及各种不同定义的熵来刻划混沌运动。无论是解析讨论还是实验室里的实验都有大量的报导。作为混沌现象的重要研究手段,计算机实验的报导更是屡见不鲜。下面,我们仅介绍流体力学实验中所看到的湍流形成机制。
  首先,考虑夹在二块无限大平板之间的流体在上、下底面温度差变大的过程中所出现的对流花样变化,最终形成对流湍流的实验。Libchaber等人以液氦为工作物质的实验中,在功率谱上看到了倍周期分岔,以及随着雷诺数的增加从层流演化到湍流的过程,中间还看到了阵发混沌的现象。Giglio等用水做工作物质,直接测量了至n=4的分岔点及相应的δ,得到了δ1~2,δ2~3.3,δ3~3.53,δ4~4.3,从趋势上来看与理论相吻合。Swinney选用水银做工作物质时,在功率谱上看到了具有两个不可约频率的准周期运动及其失稳进入混沌状态的过程,表现为罗埃尔的道路。
  剪切湍流最常见,对它的研究也最有实用价值。通常是测量在两个可以独立转动的同轴圆筒之间所盛的工作流体随着雷诺数的增加而产生的状态变化,人称泰勒不稳定性。在外圆筒静止的实验中已观察到倍周期分岔和准周期到混沌态的过渡,而且得到了和计算机实验较为一致的结果。在两个圆筒都旋转的实验中还观察到了阵发混沌的现象。流体力学的实验证实由于参数选择的不同,甚至达到参数的过程不同,流体从层流到湍流的过程呈现不同的道路。
  对于奇怪吸引子维数的测定也已有实验报导。在模拟因地球自转而引起的大气层对流的实验中测到的奇怪吸引子维数为7~12。在有温度梯度的泰勒圆筒实验中,当系统处于准周期状态时为2~3维,进入混沌状态后增加到11维;没有温度梯度时,准周期阶段的维数为2,当雷诺数R=1.3Rc时增加到4~5维。可见,这些有无限多个自由度系统的弱湍流状态完全可以用低维的奇怪吸引子来描述。但是要藉此来讨论发达的湍流恐怕还有一段距离。
  从混沌现象着手考察湍流的发生机制已经受到越来越多的科学家和工程师们的关注。在研究流体中所发生的实际情况的基础上建立新的统计模型,有希望在探求湍流过程的共同特性上取得进一步的了解。最近阶段,上述研究将有助于我们得到关于湍流统计模型较为合理的多种假设,改善控制不稳定性的技术,提高我们利用和控制湍流的能力,改进各种和湍流有关产品的设计和制造以及加强对大气和海洋这一类大尺度无序的预报能力。
  由于非线性是自然现象的普遍规律,所以在有物质流、能量流、信息流的地方均可能出现混沌现象。目前的报导不仅在自然科学、工程技术诸领域中,而且已经延伸到社会科学。钱学森同志认为系统工程得以上升为系统理论的基础就是“突变”理论。菲金堡姆常数可以作为系统理论定量化的一个出发点。湍流问题不应局限于流体力学而应成为自然科学、社会科学以至各行各业共同关心的一个横断学科。
  对混沌现象研究的背后蕴含着物理学的又一次革命,本世纪初的物理学革命找到了接近光速的高速系统和尺度为原子大小的微观系统的规律,而对由大量客体组成的“复杂”系统则知之甚少。虽然玻尔兹曼1887年就提出了S∝lnW的关系,普朗克则把它进一步推广为S=klnW,并在得到普朗克常数的同时得到了R的值。但是统计问题的复杂性,以及当时其它学科的迅速兴起吸引了人们的注意力,使得统计物理的奠基问题拖了将近一个世纪。现在,混沌理论能够很好地描述系统从简单到复杂的演化过程,但要解决上面的问题尚有大量的工作要做,很可能还是以“熵”作为问题的突破口。可以预料,这次革命的意义必定超过以前的任何一次革命。
混沌理论将有助于我们从整体上去认识现实世界多样性和复杂性的进化。西方的经典科学片面地强调了组成物质的单元,习惯于把研究对象分解为各种简单的要素来处理,以致有时忽视了我们所面临的是这些单元复杂而有机的结合,它们要随着时间的流逝而发生演化(在众多的物理学定律中唯有热力学第二定律涉及了这个论题)。为了全面、准确地认识这个世界还需要从整体上去进行考察。对此,中国古代的哲学有其独到之处,阴阳五行相生相克,充分体现了整体的协调和协作,这一点正为越来越多的西方科学家所注目。把东西方传统的哲学结合起来,建立新的自然哲学将有力地推动新的科学革命,这种哲学是建立在人和自然统一的自然观之上的。混沌理论涉及了这二个问题的基础,显示了事物随着时、空的演化过程及其越来越丰富的结果,而决不是“热寂”。可以预料,混沌理论必将在人类历史长河的这一个转折点上发挥重要的作用。
发表于 2009-7-4 10:26 | 显示全部楼层
混沌,好高深啊
发表于 2009-7-10 13:11 | 显示全部楼层
还是需要高深的数学理论
发表于 2009-7-17 12:32 | 显示全部楼层
太高深了,都;还是简单点好
发表于 2009-8-29 11:29 | 显示全部楼层
世界难题,有挑战就有机会
发表于 2009-12-17 15:46 | 显示全部楼层
混沌是生命力的体现
发表于 2011-5-9 11:00 | 显示全部楼层
混沌太高深了
发表于 2011-5-13 15:14 | 显示全部楼层
高深,湍流现在也没什么突破了
发表于 2011-9-29 00:09 | 显示全部楼层
我用的是ubuntu系统下的谷歌浏览器,为什么看不到公式?
您需要登录后才可以回帖 登录 | 快速注册

本版积分规则

关闭

站长推荐上一条 /1 下一条

QQ|小黑屋|Archiver|手机版|蓝色流体网 ( 浙ICP备11054211号 )

GMT+8, 2024-11-21 20:26 , Processed in 0.080001 second(s), 6 queries , File On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表